P2.5-2) A train starts from rest and travels along a straight track. The train accelerates from $v_o = 0$ with a constant acceleration a_A until it reaches a maximum velocity of v_{max} . It then continues with constant speed for a time and then decelerates with a constant deceleration of a_c until it Prove that the total time the train travels is stops. equal to $t_{total} = (s_{total} / v_{max}) + (v_{max} / 2)((1 / a_c) + (1 / a_A))$, where s_{total} is the total distance traveled by the train.

Given:

<u>Prove:</u> $t_{total} = (s_{total} / v_{max}) + (v_{max} / 2)((1 / a_C) + (1 / a_A))$

Solution:

Plot the velocity of the train.

Use the graphical method to prove that $t_{total} = (s_{total} / v_{max}) + (v_{max} / 2)((1 / a_c) + (1 / a_A))$